 Added value in the context of research information systems

Majid Nabavi
Iranian Research Institute for Information Science and Technology,
Tehran, Iran
Keith Jeffery
Keith G Jeffery Consultants, Faringdon, UK, and
Hamid R. Jamali
Tarbiat Moallem University, Tehran, Iran

Abstract

Purpose – The purpose of this paper is to discuss added value in the context of current research information systems (CRISs) based on metadata enrichment.
Design/methodology/approach – This discussion paper uses literature review as well as analysis of CRISs specifications to discuss added value possibilities.
Findings – Added value of the CRISs is in their integration and interoperability with the same and similar information systems. Since metadata plays key roles in interoperability of information systems, therefore focussing on metadata-related issue can add considerable values to CRISs. Two types of metadata can be distinguished in every CRISs including macro- and micro-metadata. In terms of macro-metadata common European research information format (CERIF) by itself is an added value for CRIS because it draws a complete view of the research landscape including entities and their relations. CERIF metadata structure is designed in such a way that supports micro- and macro-metadata.
Originality/value – There is a lack of literature on adding value to research information systems especially CRIS and particularly how value can be added in CRISs still is an unanswered question. CRIS developers can use this paper as a road map to choose the most valuable strategy for adding value to their systems.

Keywords Added value, CERIF, CRIS, Data model, Macro-metadata, Micro-metadata

Paper type General review

1. Introduction

Every research information system is composed of data about research landscape components such as projects, research organizations, researchers and research outputs (e.g. publications or patents). Research information is usually available on the web and could be found on organization websites, researcher’s personal webpage and information systems. Most of the existing structures are proprietary or not well-known. This research information can be useful for all of science and technology stakeholders for discovering, evaluating and planning research activities at organizational or national levels. The main stakeholders of research information are: researchers, research managers, science and technology policy makers, research councils, organizations responsible for technology transmission, media and the public. Ideally, research information should be available in a consistent, updated and open access manner, but the reality is different. Research data are distributed among organizational, personal, social and commercial websites and these data have various structures (Blümel et al., 2014). In other words, these data are just like islands owned by various persons and organizations and each of them have their own structure. Therefore, integration of these data and making an integrated and comprehensive information system containing a single structure of research data, is necessary